Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry

نویسنده

  • S.-K. Lee
چکیده

High-permeability magnetic shields generate magnetic field noise that can limit the sensitivity of modern precision measurements. We show that calculations based on the fluctuation-dissipation theorem allow quantitative evaluation of magnetic field noise, either from current or magnetization fluctuations, inside enclosures made of high-permeability materials. Explicit analytical formulas for the noise are derived for a few axially symmetric geometries, which are compared with results of numerical finite element analysis. Comparison is made between noises caused by current and magnetization fluctuations inside a high-permeability shield and also between current-fluctuation-induced noises inside magnetic and nonmagnetic conducting shells. A simple model is suggested to predict power-law decay of noise spectra beyond a quasi-static regime. Our results can be used to assess noise from existing shields and to guide design of new shields for precision measurements. © 2008 American Institute of Physics. DOI: 10.1063/1.2885711

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of variations in magnetic Reynolds number on magnetic field distribution in electrically conducting fluid under magnetohydrodynamic natural convection

In this study the effect of magnetic Reynolds number variation on magnetic distribution of natural convection heat transfer in an enclosure is numerically investigated. The geometry is a two dimensional enclosure which the left wall is hot, the right wall is cold and the top and bottom walls are adiabatic. Fluid is molten sodium with Pr=0.01 and natural convection heat transfer for Rayleigh num...

متن کامل

Geological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering

This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...

متن کامل

Calculating Magnetic Permeability Response of a Conducting Square Ring Structure

In the present work, we investigate the tunability of the magnetic response of a new structure. A lattice of periodically arranged close-packed square conducting rings has been studied for this purpose. Here, instead of enhancing the magnetic activity via resonance, like in split-ring resonators, we concentrate on the analysis of the interactions between these rings. The core idea is to design ...

متن کامل

Center of Mass Estimation of Simple Shaped Magnetic Bodies Using Eigenvectors of Computed Magnetic Gradient Tensor

Computed Magnetic Gradient Tensor (CMGT) includes the first derivatives of three components of magnetic field of a body. At the eigenvector analysis of Gravity Gradient Tensors (GGT) for a line of poles and point pole, the eigenvectors of the largest eigenvalues (first eigenvectors) point precisely toward the Center of Mass (COM) of a body. However, due to the nature of the magnetic field, it i...

متن کامل

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008